

 HP Internal Use Only
 1

A pragmatic view of the
Capability Maturity Model

Tim Mikkelsen, R&D Project Manager
TMO Software Technology Center
TN 679-3192
mailto:Tim_Mikkelsen@agilent.com

Executive Summary
The Capability Maturity Model (CMM) is a
very useful tool. It is most effective when
viewed and used as a means to a business
objective and not an end in itself. The article
describes some personal experiences, how to get
started and challenges with CMM.

A brief review of the CMM
The Software Engineering Institute’s (SEI)
Capability Maturity Model (CMM) describes a
framework that organizations can use to determine
their ability to develop and maintain software. It is
based on earlier process management work by
Deming, Juran and Crosby but is specifically
adapted to the needs of software projects and
organizations.

CMM describes a continuum for software maturity
ranging from ad hoc to mature and disciplined
processes. It is built around the following, now
familiar, 5 level model:

5 Optimized Continuous process improvement
4 Managed Product and process quality
3 Defined Defined processes
2 Repeatable Project management processes
1 Initial Ad hoc or chaotic

There is a wealth of information available about
SEI’s CMM framework. A series of resources are
listed at the end of the article.

Living through a CMM transition
I was involved with the transition of a moderate
size software organization from level 1 (ad hoc)
through level 2 (repeatable) up to level 3 (defined).
The organization moved rather quickly through
these phases (apparently faster than is normal). In
general, the process helped the quality and
effectiveness of the software development
organization.

Prior to the use of CMM, we were a fairly typical
HP software organization. Some of our processes
were good, but many were very ad hoc and
informal. We had the normal problems and
associated project team heroics. With the
transition to and use of the CMM we were able to
deliver our defined products well. We really had a
good handle on the software development process.
We improved our software engineering
professionalism. It did help and in several areas,
the CMM made a big difference - especially in
identifying risk areas in our development process.

A concern I had with the use of CMM was that
development process became very ‘turn-the-crank’.
Note that the organization worked hard at having a
flexible process and not become too rigid. In spite
of the effort there was still an increase in
bureaucracy. Some of this is a normal side effect
and is really good in most of the software
development process. However, the concern
comes in that I felt that there was limited
innovation and improvement in the product being
delivered – even if it was on time with good
quality. Related to my concern, there were also
comments from some of the project managers that
they felt like clerks filling out forms - rather than
being paid for their judgement.

Is CMM worth it?
Out of this personal experience, I feel the CMM
model is a very useful software management tool.
But, it is crucial that you understand your project
and organizational goals. A common failure is to
attempt to ‘achieve CMM level X’. The intent
should be to improve software development to
meet specific business goals. The goal should be
of the form 'we need to improve aspect Y of our
software development because it is necessary for
our business goal Z'.

An example of a good goal driving CMM might
be: “We need to improve our software quality
because we are losing sales due to customer

dissatisfaction over product failures.” Another
example: “we need to reduce our product cycle
time to more effectively compete with our major
competitor.” But the key is for everyone involved
to internalize why you are doing CMM – that it is
not just to get to an arbitrary level. CMM is just a
tool – a very useful tool – but a tool that can be
applied to meet a business need (or misapplied).
The question of ‘is it worth it’ has the answer of
‘yes, but only if it supports your business goals’.

The key to CMM, like any good software process,
is that it is used as a means to achieve business
goals as opposed to being an end in itself. A key
corollary to this is that higher CMM levels are not
necessarily better or appropriate – it depends on the
goals and the character of the organization and
products. If attaining a higher CMM level does not
address a business need then it is probably not
valuable. The common sense approach is:
1. Set the business goals
2. Understand what it takes to achieve the goals
3. Evaluate CMM as a possible tool
4. Determine which CMM level is appropriate

How do you get started?
Assuming that you do want to get started with
CMM, the key question to ask is: "do I want to
build CMM expertise inside my organization?"
Generally speaking, if you are going to commit to a
process, you need to build the internal knowledge.
Given a desire to learn and implement CMM, a
good set of steps include:
1. Identify a lead/champion for CMM
2. Get the lead trained and educated on CMM
3. Identify a trial project
4. Do an assessment of the project
5. Review the results
6. Train the managers and influencers on CMM
7. Train the organization on CMM
8. Do assessments of the organization
9. Review the results
10. Rinse and repeat (Plan/Do/Check/Act…)

This sounds a bit daunting - using the CMM
framework does take time and effort. In my
previous software R&D organization it took
approximately ½ engineer per 10 developers to
manage the CMM process. In addition to the
process management, there is work that project
managers and engineers need to do. However, if
the process is thought-out carefully, the additional
effort should be minimal or at least acceptable.
And the desire is that you are not adding a new set
of things on top of everything else you are doing,

but that some of your current process efforts are
replaced with more effective or focused efforts.

In terms of the training expense, there are a variety
of studies that project training costs between $500
and $2000 per engineer. However, remember in all
of this that organizations experience improvements
in productivity, time to market, and post-release
defects. (A study summarized return on
investment to be approximately 5x.)

What are the barriers?
The CMM framework has spread fairly broadly.
However, it is not yet universally accepted.
Common concerns and issues include:
• the time to implement CMM
• the cost of implementing CMM programs
• the effort may be counter-productive
• the non-CMM issues are ignored
• the organization may become bureaucratic
• awareness of CMM
• lack of training on CMM
• cultural issues
• motivation
• and so on…

All of these barriers can be real problems, but in
my view the organization motivation is the critical
factor. Someone has to really drive for the use of
CMM. This is the area where the tie to real
business needs helps. If it is tied to real business
needs that the manager, leader or champion can
articulate, the rest of the organization can
understand the need to adopt CMM. Otherwise,
CMM can turn into 'yet another bureaucratic'
process that the people in the organization have to
deal with.

For organizations just getting started, there is
another issue (besides motivation) that is critical -
awareness. How do you know if you want to
pursue CMM if you don't understand it yet?
Although your business needs may indicate full
commitment to the CMM, most organizations need
to have a better sense of what they are getting into.
Clearly, reading the literature and taking classes
will help. Another very useful approach is to
perform a CMM self-assessment. (There is a
companion article on CMM self-assessment.)

Conclusions
The CMM software maturity model can be very
useful. The key to CMM, like any good software
process, is that it is used as a means to achieve

 HP Internal Use Only
 3

business goals as opposed to being an end in itself.
The CMM process can be implemented with
minimal or at least acceptable additional effort -
when implemented in a careful and considered
fashion. There can be a moderately healthy
learning curve and cost associated with coming up
the CMM - but the benefits can make it
worthwhile. To quote one of my sources of
inspiration: "Joe-Bob says check it out."

CMM Resources and Reading
1. “Software Process Improvement: 10 Traps to

Avoid” by Karl Wiegers. Software
Development, May 1996. Pages 51-58. An
excellent, concise, article on the pragmatic
aspects of software process.

2. “Misconceptions of the CMM” by Karl
Wiegers. Software Development, November
1996. Pages 57-64. A quick sanity check on
problems with the CMM.

3. The Software Engineering Institute. URL:
http://www.sei.cmu.edu/programs/sepm/proce
ss.html. Home page for the SEI’s process
technologies, of which the software CMM is
only one. There are a variety of adaptations of
the maturity model.

4. The SEI’s CMM. URL:
http://www.sei.cmu.edu/cmm/cmms/cmms.ht
ml. Home page for the Capability Maturity
Model with links to a summary, related
articles and how to obtain the official model.

5. “Software Quality and the Capability Maturity
Model” by J. Herbsleb, D. Zubrow, D.
Goldenson, W. Hays and M. Paulk. –
Communications of the ACM, June 1977,
Volume 40, Number 6. Pages 31-40. A good
article on the CMM and its effectiveness.

6. “Assessment Checklist for MTD CMM
Process Assessment” by Scott Jordan.
URL for Level 2:
http://swtc.lvld.hp.com/~tim/swe/check-
l2.html.
URL for Level 3:
http://swtc.lvld.hp.com/~tim/swe/check-
l3.html.

7. “Software Process Profile: HP R&D Software
Process Assessment” by Bert Laurence. HP’s
Software Initiative (SWI).

8. The Software Engineering Institute. URL:
http://www.sei.cmu.edu. Phone: 412-268-
5800. Home page for the SEI organization.

9. HP’s Software Initiative. URL:
http://www.sei.cmu.edu. Phone: 412-268-
5800. Home page for the SEI organization.

BIOGRAPHY:	Tim	Mikkelsen	started	with	HP	
in	Loveland	in	1977	working	on	instrument	
I/O.		He	has	BS	&	MS	degrees	in	CS	(with	EE	
minor)	and	recently	received	a	MS	in	
Management	of	Technology	from	NTU.	Over	
the	years	Tim	has	been	an	R&D	project	and	
section	manager,	a	cross-functional	project	
and	business	team	manager	as	well	as	
having	done	rotations	into	marketing.	He	is	
co-author	on	a	book	on	configuration	
management.	Tim	has	a	teenage	son	and	
daughter.	He	enjoys	skiing,	science	fiction,	
and	movies.	

